MAMTAKUMARI* AND R.K. SINGH

Department of Horticulture (Vegetables and Floriculture), Bihar Agricultural College, Sabour (Bihar) India.

(Accepted : March, 2006)

In an experiment conducted at permanent experimental area of Vegetable section at Bihar Agricultural College Farm, Sabour economics of cultivation of okra and cost : benefit ratio were studied at the rates prevailing in the market. The maximum net return and benefit cost ratio was observed at the fertility level $(N_{200}P_{100}K_{100})$ and spacing (60 x 45 cm.) Further it was found that net return and benefit : cost ratio declined at the highest fertility level and spacing of $(N_{150}P_{120}K_{120})$ and (60 x 60 cm.) respectively.

Key words : Okra, Economics.

Introduction of hybrid seeds. It increases the production of vegetable by 30 to 40%. Hybrids have more vigrous plant so they need more nutrients, space and other requirements for proper growth and development than the traditional ones, since hybrid seeds are costly, so to minimize the burden of cost, proper dose of fertilizer should be supplemented. Farmers think that the cultivation of hybrid is very costly affair than the cultivation of traditional crops. Hence, the economics of cultivation of hybrid okra and cost benefit ratio were studied.

A field experiment was conducted in Kharif season in the year 1998 at the permanent experimental area of Sabour farm in the campus of Rajendra Agricultural University. The experiment was conducted in Factorial Randomized Block Design with 12 treatments replicated per plant. At last the economics was worked out.

It was found that increasing dose of fertilizer i.e. NPK was instrumental in increasing net return. However, trend in increase in net-return, as a result of increasing levels of fertilizer, was obtained only up to a close of 200 N+100 P_2O_5 +100 K_2O kg/ha (F_3). Further increase in dose of fertilizer to $N_{250}P_{120}K_{120}$ kg/ha (F_4) caused net-return to decrease. Such a declining trend was noted at all the spacings, but with a difference that the drop in net return at F_4 in comparison to F_3 was the maximum (23.01%) in the closest spacing S_1 which reduced to 9.52 per cent in S_2 but increased in fertilizer dose was comparatively less at the closest spacing S_1 . The rate of increase in net-return increased considerably at the wider spacings S_2 and S_3 . It was also pertinent to note that if the plots were supplied with a dose

Tr.	Common	Cost of	Cost of	Total	Yield	Selling	Gross	Net	Cost:
	cost of	seed	fertili-	cost of	of fruit	price	income	profit	benefit
	cultivation	(Rs.)	zer (1)	culti-	(q/ha)	(q/ha)	(2)	(2-1)	ratio
	(Rs.)			vation					
T_1	18575	4000	2410	24985	75.65	400	30260	5275	1.20
T_2	18575	4000	3370	25945	102.28	400	40912	14967	1.57
T_3	18575	4000	4330	26905	110.46	400	44184	17279	1.46
T_4	18575	4000	5290	27865	102.92	400	41168	13303	1.47
T_5	18575	300	2410	23985	70.55	400	28220	4235	1.17
T_6	18575	300	3370	24945	117.70	400	47080	22135	1.88
T_7	18575	300	4330	25905	153.00	400	61200	35295	2.36
T_8	18575	300	5290	26865	147.00	400	58800	31935	2.18
T 9	18575	200	2410	22985	64.72	400	25888	2903	1.12
T_{10}	18575	200	3370	23945	108.80	400	43232	19287	1.80
T_{11}	18575	200	4330	24905	140.08	400	56032	31127	2.25
T ₁₂	18575	200	5290	25865	143.25	400	57300	31435	2.21

thrice. Four levels of fertility as $F_1 (N_{100}P_{60}K_{60})$, $F_2 (N_{150}P_{80}K_{80})$, $F_3 (N_{200}P_{100}K_{100})$ and four spacing of S_1 (60 x 30 cm), S_2 (60 x 45 cm) and S_3 (60 x 30 cm) were adopted. Five randomly selected plants from each treatments were taken for further detailed study. Observation were recorded on plant height, internodal length, fruit length, fruit diameter, weight of fruit, number of fruit, total number of fruit, yield

of 100 $P_2O_5 + 60 K_2O 60 kg/ha (F_1)$ the lowest under investigation, the maximum net return was fetched from the closest spacing S₁ (60 x 30 cm). However, at all other levels of fertilizer (F₂, F₃ and F₁) the maximum net return was obtained with the intermediate spacing S₂(60 x 45 cm). The highest net return of Rs. 35295 was realized from the treatment combination S₂F₃ (60 x 45 cm, N₂₀₀P₁₀₀K₁₀₀) which